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Abstract

Mitochondrial dysfunction is a central driver of neurodegeneration in Alzheimer's disease (AD) and Huntington's disease
(HD). This review synthesizes evidence on the convergence of genetic mutations and environmental toxicants on mito-
chondrial pathways to promote pathology and critically evaluates emerging mitochondria-targeted therapies. We highlight
the impact of mutations in genes such as PSEN1, PSEN2, APP, TREMZ2, and HTT, alongside exposures to agents such
as rotenone, paraquat, heavy metals, and solvents, in disrupting mitochondrial integrity. Key mechanisms include im-
paired oxidative phosphorylation, calcium dysregulation, reactive oxygen species accumulation, defective mitophagy,
and altered fission—fusion dynamics. We further emphasize the synergistic interplay between genetic vulnerability and
environmental insults, positioning the mitochondrial interactome as a unifying framework for understanding AD and HD
pathogenesis. We assess therapeutic strategies, such as mitophagy enhancers, dynamin-related protein 1 inhibitors,
and mitochondria-targeted antioxidants, while highlighting significant translational challenges, including poor brain pen-
etrance and variable patient responses. Finally, we propose a precision medicine approach, leveraging patient-derived
induced pluripotent stem cells, advanced imaging modalities, and multi-omics biomarker discovery to facilitate early de-
tection and individualized interventions. By integrating mechanistic, toxicological, and therapeutic perspectives, this re-
view underscores the pivotal role of mitochondria and identifies them as a promising target for disease-modifying thera-
pies in AD and HD.
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Introduction

Neurodegenerative disorders such as Alzheimer's disease
(AD) and Huntington's disease (HD) are progressive and de-
bilitating conditions characterized by selective neuronal loss
and central nervous system dysfunction.! Despite distinct
genetic etiologies and clinical presentations, both diseases
share a central pathological hallmark: mitochondrial dys-
function. As central hubs of energy metabolism, redox regu-
lation, calcium buffering, and cell death signaling, mitochon-
dria are particularly critical for neurons, which have high
metabolic demands and limited regenerative capacity.?3
Early studies of mitochondrial involvement in neurodegen-
eration focused on discrete processes such as deficits in
adenosine triphosphate (ATP) production or increased oxi-
dative stress.* However, it is now clear that mitochondria do
not operate in isolation but are dynamically regulated by a
complex network of genetic, environmental, and intracellular
signals.® This network, referred to herein as the mitochon-
drial interactome, encompasses both intrinsic factors, such
as mutations in nuclear and mitochondrial genes, and ex-
trinsic influences, including exposure to neurotoxicants and

inflammation.® Disruptions to this tightly regulated system
can trigger a cascade of pathological events, ultimately lea-
ding to neuronal injury and death.”

Environmental
toxicants

- Rotenone
/ E
—— ﬁ Paraquat

‘-“ MPTP

F Heavy
metals

O;idatrilve . Reactive Defective
phospharylation oxygen mitophagy

impairment species

Calcium Altered Q Altered
imbalance fission-fusion ™ fusion

dynamics dynamics

Q@

Therapeutic strategies

H @ & O

Mitophagy DRP1 Bioenergetic Mitochondria-
enhancers inhibitors. support targeted
antioxidants

Received: May 30, 2025 | Revised: August 29, 2025 | Accepted: September 20, 2025 | Published online: September 30, 2025

@ @ Copyright © 2025 Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-
Noncommercial 4.0 International License (CC BY-NC 4.0), permitting all non-commercial use, distribution, and reproduction
BY NC

in any medium, provided the original work is properly cited.



Cell Nature Science 2025;1(1):¢00002
https://doi.10.61888/ncs.2025.00002

In AD, mutations in genes such as PSEN1, PSEN2, and
APP disrupt key aspects of mitochondrial quality control, in-
cluding calcium homeostasis, redox balance, and mitochon-
drial dynamics.® These genetic vulnerabilities are exacer-
bated by environmental toxins and factors such as heavy
metals and air pollutants, which can inhibit mitochondrial
respiratory complexes and potentiate oxidative stress.®'?
Similarly, in HD, the expanded Cytosine-Adenine-Guanine
trinucleotide (CAG) repeat in the HTT gene produces a mu-
tant huntingtin protein, which disrupts mitochondrial traffick-
ing, oxidative phosphorylation, and calcium handling.'® Alt-
hough environmental links in HD are less well defined than
in AD, accumulating evidence suggests that factors such as
metal exposure, stress, and dietary deficiencies may modu-
late disease progression via mitochondrial pathways.?
Moreover, mitochondrial dysfunction in AD and HD extends
beyond organellar defects to include impaired signaling, bi-
ogenesis, proteostasis, and inter-organelle communication.
These disruptions collectively compromise cellular energy
homeostasis, exacerbate excitotoxic and inflammatory
stress, and promote the accumulation of toxic proteins. Mi-
tochondria thus serve as both sensors and amplifiers of neu-
ropathological stress, integrating genetic susceptibilities
and environmental exposures.® This review aims to inte-
grate current knowledge on how genetic mutations, environ-
mental toxicants, and mitochondrial signaling pathways con-
verge in the pathogenesis of AD and HD. By framing neuro-
degeneration through the lens of the mitochondrial interac-
tome, we seek to highlight shared molecular mechanisms,
identify potential therapeutic targets, and propose new di-
rections for precision medicine approaches in neurodegen-
erative disease management.

Beyond mitochondrial impairment, environmental toxins dis-
rupt other cellular systems that contribute to neurodegener-
ation. Several pesticides and heavy metals can induce ER
stress, triggering the unfolded protein response and perturb-
ing calcium homeostasis, which further sensitizes neurons
to apoptotic signaling.101 Toxins such as dieldrin have been
shown to impair lysosomal function and autophagic flux, ex-
acerbating mitophagy deficits already present in PINK1-and
Parkin-mutant backgrounds. Chronic exposure to airborne
pollutants (PM2.5, PAHs) and manganese also activates mi-
croglial inflammatory cascades, leading to sustained re-
lease of pro-inflammatory cytokines (e.g., Tumor Necrosis
Factor Alpha (TNF-a), Interleukin-1 Beta (IL-18)) and reac-
tive oxygen species.mz'103 This neuroinflammatory milieu
not only damages neurons directly but also amplifies ER
and mitochondrial stress, establishing a vicious cycle of cel-
lular dysfunction.104 These findings underscore that the
pathogenic synergy between genetic predisposition and en-
vironmental exposure extends beyond mitochondria to in-
clude ER stress responses, lysosomal degradation path

ways, and neuroinflammatory signaling. Together, these in-
terconnected dysfunctions accelerate the progression of PD
and HD.

Therapeutic targeting of mitochondrial dys-
function in PD and HD

Given the central role of mitochondrial dysfunction in the
pathogenesis of both PD and HD, mitochondria have
emerged as critical therapeutic targets (Fig.5a,b).105 Unlike
traditional symptomatic treatments, which primarily modu-
late neurotransmitter levels, mitochondrial-targeted thera-
pies aim to reverse or mitigate upstream cellular pathology,
offering the potential for disease modification.'%® A key ther-
apeutic strategy involves restoring mitophagy—the selective
autophagic degradation of dysfunctional mitochondria—
which is compromised in PD due to mutations in PINK1 and
Parkin, and in HD due to mHTT-mediated inhibition of au-
tophagic flux.'%” Several pharmacological agents are being
developed to enhance PINK1-Parkin signaling or bypass
defective steps.108 For instance, small molecules such as
KTP601 can stabilize PINK1 on the outer mitochondrial
membrane, while others mimic phosphorylated ubiquitin to
activate Parkin. AMP-activated protein kinase activators like
metformin and 5-aminoimidazole-4-carboxamide ribonucle-
otide (AICAR) have been shown to stimulate both mitoph-
agy and mitochondrial biogenesis in preclinical PD models,
even with impaired PINK1-Parkin signaling. Despite strong
preclinical data, translating these findings has proven chal-
lenging. Mitophagy enhancers and metabolic modulators of-
ten face significant hurdles, such as poor pharmacokinetics,
uncertain dosing regimens, and variable target engagement
in human neurons, which have limited their clinical advance-
ment.'%""" Another therapeutic axis involves modulating
mitochondrial dynamics—specifically, correcting the imbal-
ance between fission and fusion.'? Excessive fission, com-
mon in both PD and HD, contributes to bioenergetic decline
and pro-apoptotic signaling. Pharmacological inhibitors of
DRP1, such as Mdivi-1, can reduce mitochondrial fragmen-
tation and preserve neuronal viability.113 In HD models, en-
hancing the expression of fusion-promoting proteins like
MFN2 and OPA1 through gene therapy or small molecules
has shown promise in restoring mitochondrial morphology
and improving ATP production.114 However, Mdivi-1 and re-
lated DRP1 inhibitors have not progressed to human trials
due to off-target effects and safety concerns, underlining the
difficulties in developing safe modulators of mitochondrial
dynamics.”s'116 At the genetic level, CRISPR/Cas9 tech-
nologies are being employed to correct the pathogenic HTT
expansions or to knock down hyperactive mutant LRRK2 al-
leles. These approaches have successfully restored mito-
chondrial respiration and dynamics in patient-derived iPSC
models, presenting a promising avenue for precision thera
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Figure created using Biorender and Napkin Al. (a) Thera-
peutic Strategies: Emerging mitochondria-targeted interven-
tions address these pathological mechanisms. Approaches
include restoring mitophagy (KTP601, NAD+ precursors),
modulating mitochondrial dynamics (Mdivi-1, MFN2 activa-
tors), enhancing redox balance (MitoQ, SkQ1, SS-31), and
improving bioenergetics (Coenzyme Q10, SS-31). Together,
these strategies highlight mitochondria as a central thera-
peutic target in neurodegenerative disease modification. (b)
Pathophysiological Basis: Mitochondrial dysfunction con-
tributes to neuronal vulnerability in PD and HD through sev-
eral interconnected pathways: impaired mitophagy, altered
dynamics, redox imbalance, and compromised bioenerget-
ics. These disruptions amplify oxidative stress, energy fail-
ure, and progressive neurodegeneration. ATP, adenosine
triphosphate; HD, Huntington’s disease; MFN2, mitofusin 2;
NAD+, nicotinamide adenine dinucleotide (oxidized form);
OPA1, optic atrophy 1; PD, Parkinson’s disease; ROS, re-
active oxygen species.

Improving mitochondrial bioenergetics remains a corner-
stone of therapeutic development. Agents such as coen-
zyme Q10 and creatine, though showing mixed results in
large-scale trials, have demonstrated the ability to enhance
electron transport chain activity and buffer ATP levels in
early-stage PD and HD, as shown in Figure 5a.""® More re-
cently, targeting NAD+ metabolism with compounds like nic-
otinamide riboside and nicotinamide mononucleotide has
gained attention. These compounds boost sirtuin activity
and PGC-1a-mediated biogenesis, thereby enhancing mito-
chondrial resilience to oxidative and metabolic stress. How-
ever, translating these strategies has proven challenging.
Large-scale clinical trials of coenzyme Q10 and creatine in
PD and HD yielded disappointing results, showing no signif-
icant disease-modifying benefits despite strong biochemical
rationale and early pilot data. These failures highlight chal-
lenges related to brain penetrance, trial design, and the pos-
sibility that mitochondrial rescue may only be effective dur-
ing specific disease stages or in particular genetic sub-
groups.”g’122 Mitochondria-targeted antioxidants represent
another promising avenue.'® Unlike conventional antioxi-
dants, compounds such as MitoQ, SkQ1, and SS-31 are de-
signed to accumulate within mitochondria, where they neu-
tralize ROS at the source and stabilize mitochondrial mem-
branes. These molecules have shown promise in reducing
lipid peroxidation and preserving mitochondrial potential in
animal models and are currently undergoing clinical evalua-
tion. 119124125 pgrajlel strategies involve activating Nrf2
pathway—a master regulator of antioxidant and detoxifica-
tion responses. Nrf2 activators like dimethyl fumarate upreg-
ulate cellular defenses and improve mitochondrial morphol-
ogy and function in both PD and HD models. While early-
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phase trials are ongoing, their long-term efficacy and safety
remain uncertain. These translational gaps underscore the
need for precision medicine approaches, integrating patient-
derived iPSCs, multi-omics biomarkers, and advanced im-
aging to identify patients most likely to benefit from mito-
chondria-targeted therapies.25*126

Cutting-edge approaches such as mitochondrial transplan-
tation and nanomedicine represent the next frontier. Mito-
chondrial transplantation involves the direct transfer of
healthy mitochondria into damaged neurons, a strategy that
has shown neuroprotective effects in rodent models of
PD."?" Complementarily, nanocarrier systems, including lip-
osomes and cerium oxide nanoparticles, are being engi-
neered to deliver antioxidants, gene-editing tools, or even
intact mitochondria across the blood-brain barrier. While
challenges remain concerning immune compatibility, tar-
geted delivery, and long-term integration, these novel plat-
forms underscore a future in which mitochondria-centric in-
terventions may transform the therapeutic landscape of neu-
rodegenerative diseases.'"”

Limitations and future directions

Despite significant advances, important gaps remain in un-
derstanding the mitochondrial interactome in neurodegener-
ation. Mechanistic connections between specific gene mu-
tations (e.g., PINK1, PRKN, LRRK2, GBA, and HTT) and
mitochondrial dysfunction are still incompletely mapped,
particularly across different neuronal subtypes. Human data
on long-term epigenetic consequences of environmental ex-
posures are scarce, and standardized biomarkers for mito-
chondrial dysfunction are lacking, hindering both early diag-
nosis and therapeutic monitoring. Furthermore, most evi-
dence derives from PD and HD models, which may not fully
represent mitochondrial dynamics in other neurodegenera-
tive diseases such as Alzheimer’s disease or ALS. Future
research should focus on (i) patient-derived iPSC models
and advanced imaging modalities to capture disease heter-
ogeneity, (i) multi-omics approaches to discover reliable,
clinically translatable mitochondrial biomarkers, (iii) integra-
tive studies that assess the combined impact of genetics,
environment, and organelle cross-talk (ER stress, lysosomal
impairment, neuroinflammation), and (iv) translational ef-
forts to improve brain penetrance and specificity of mito-
chondria-targeted therapeutics. Collaborative, cross-dis-
ease studies will be crucial to validate the mitochondrial in-
teractome as a unifying framework and accelerate the de-
velopment of precision therapies.

Conclusions

This review positions mitochondria at the center of PD and
HD pathogenesis, where genetic mutations and environ-
mental exposures converge to disrupt cellular homeostasis.
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By mapping the mitochondrial interactome, we identify ac-
tionable therapeutic nodes, including impaired mitophagy,
fission—fusion imbalance, and oxidative stress, that repre-
sent actionable therapeutic nodes. Promising strategies that
move beyond symptomatic management include mitochon-
dria-targeted antioxidants (e.g., MitoQ, SS-31), DRP1 inhib-
itors (e.g., Mdivi-1), NAD+ boosters (e.g., nicotinamide ri-
boside, nicotinamide mononucleotide), and gene-editing
techniques for mutations in genes such as LRRK2 and HTT.
Combining these approaches with precision medicine
tools—such as iPSC-based modeling, advanced imaging,
and biomarker-guided patient stratification—will be essen-
tial to overcome translational barriers. Mitochondria repre-
sent not only a shared vulnerability in PD and HD but also a
promising focal point for therapeutic development. Harness-
ing mechanistic insights into the mitochondrial interactome
can pave the way for individualized, mitochondria-centered
interventions with the potential to alter disease progression
and improve patient outcomes.
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